Combining and Comparing Coalescent, Distance and Character-Based Approaches for Barcoding Microalgaes: A Test with Chlorella-Like Species (Chlorophyta)
نویسندگان
چکیده
Several different barcoding methods of distinguishing species have been advanced, but which method is the best is still controversial. Chlorella is becoming particularly promising in the development of second-generation biofuels. However, the taxonomy of Chlorella-like organisms is easily confused. Here we report a comprehensive barcoding analysis of Chlorella-like species from Chlorella, Chloroidium, Dictyosphaerium and Actinastrum based on rbcL, ITS, tufA and 16S sequences to test the efficiency of traditional barcoding, GMYC, ABGD, PTP, P ID and character-based barcoding methods. First of all, the barcoding results gave new insights into the taxonomic assessment of Chlorella-like organisms studied, including the clear species discrimination and resolution of potentially cryptic species complexes in C. sorokiniana, D. ehrenbergianum and C. Vulgaris. The tufA proved to be the most efficient barcoding locus, which thus could be as potential "specific barcode" for Chlorella-like species. The 16S failed in discriminating most closely related species. The resolution of GMYC, PTP, P ID, ABGD and character-based barcoding methods were variable among rbcL, ITS and tufA genes. The best resolution for species differentiation appeared in tufA analysis where GMYC, PTP, ABGD and character-based approaches produced consistent groups while the PTP method over-split the taxa. The character analysis of rbcL, ITS and tufA sequences could clearly distinguish all taxonomic groups respectively, including the potentially cryptic lineages, with many character attributes. Thus, the character-based barcoding provides an attractive complement to coalescent and distance-based barcoding. Our study represents the test that proves the efficiency of multiple DNA barcoding in species discrimination of microalgaes.
منابع مشابه
How DNA barcoding can be more effective in microalgae identification: a case of cryptic diversity revelation in Scenedesmus (Chlorophyceae)
Microalgae identification is extremely difficult. The efficiency of DNA barcoding in microalgae identification involves ideal gene markers and approaches employed, which however, is still under the way. Although Scenedesmus has obtained much research in producing lipids its identification is difficult. Here we present a comprehensive coalescent, distance and character-based DNA barcoding for 11...
متن کاملAppraisal of the entire mitochondrial genome for DNA barcoding in birds
DNA barcoding based on a standardized region of 648 base pairs of mitochondrial DNAsequences from Cytochrome C Oxidase 1 (COX1) is proposed for animal species identification.Recent studies suggested that DNA barcoding has been effective for identifying 94% of birdspecies. The proposed threshold of 10 times the average intraspecific variation could be used forthe identification and delimitation ...
متن کاملComparing and combining distance-based and character-based approaches for barcoding turtles.
Molecular barcoding can serve as a powerful tool in wildlife forensics and may prove to be a vital aid in conserving organisms that are threatened by illegal wildlife trade, such as turtles (Order Testudines). We produced cytochrome oxidase subunit one (COI) sequences (650 bp) for 174 turtle species and combined these with publicly available sequences for 50 species to produce a data set repres...
متن کاملMolecular investigation and DNA Barcoding of Platycephalus indicus from the Persian Gulf
This study aimed to use mitochondrial DNA barcoding method to undrestand better toxanomic status of the Platycephalus indus and find genetic linkage with other reported specimens from different parts of the world as well as to manage the optimal utilization of native species and sustainable conservation. Sampling was performed from coastal waters of Hormozgan province. DNA was extracted from th...
متن کاملBayesian species identification under the multispecies coalescent provides significant improvements to DNA barcoding analyses.
DNA barcoding methods use a single locus (usually the mitochondrial COI gene) to assign unidentified specimens to known species in a library based on a genetic distance threshold that distinguishes between-species divergence from within-species diversity. Recently developed species delimitation methods based on the multispecies coalescent (MSC) model offer an alternative approach to individual ...
متن کامل